题目内容

已知两个球的表面积之比为1:16,则这两个球的半径之比为(  )
A、1:16B、1:48C、1:32D、1:4
分析:设大球与小球两个球的半径分别为R,r,然后表示出两个球的表面积:S1=4πR 2,S2=4πr2,进而根据题中的面积之比得到半径之比,即可得到答案.
解答:解:由题意可得:设大球与小球两个球的半径分别为R,r,
所以两个球的表面积分别为:S1=4πR 2,S2=4πr2
因为两个球的表面积之比为1:16,
所以可得:
S2
S1
=
r2
R2
=
1
16

所以
r
R
=
1
4

故选D.
点评:解决此类问题的关键是熟练掌握球的表面积的计算公式,并且结合正确的运算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网