题目内容

一颗骰子连续掷两次,朝上的点数依次为a、b,使a=2b的概率是            (  )
A、
1
3
B、
1
4
C、
1
6
D、
1
12
分析:先求一颗骰子连续掷两次,朝上的点数a,b的所有情况,再求使a=2b的结果的个数,代入古典概率的计算公式可求
解答:解:一颗骰子连续掷两次,朝上的点数依次为a、b,则a,b的所有情况有(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)
共36种结果,每组结果等可能出现,属于古典概率
记:“朝上的点数依次为a、b,使a=2b”为事件A,则A包含的结果有:(2,1)(4,2)(6,3)共3种结果
由古典概率的计算公式可得P(A)=
3
36
=
1
12

故答案为:
1
12
点评:本题主要考查了古典概率的求解,求解古典概率的关键是要准确的求出基本事件的个数与指定事件的个数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网