题目内容
数列1,2+
,3+
+
,…,n+
+
+…+
的前n项和为( )
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
分析:利用等比数列的前n项和公式可得此数列的通项an=n+
+
+…+
=n+
=n+1-
.再利用等差数列和等比数列的前n项和公式即可得到此数列的前n项和.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| ||||
1-
|
| 1 |
| 2n-1 |
解答:解:∵此数列的通项an=n+
+
+…+
=n+
=n+1-
.
∴此数列的前n项和Sn=2+3+…+(n+1)-1-
-
-…-
=
-
=
n2+
n-2+
.
故选C.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| ||||
1-
|
| 1 |
| 2n-1 |
∴此数列的前n项和Sn=2+3+…+(n+1)-1-
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| n(n+3) |
| 2 |
1×[1-(
| ||
1-
|
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
故选C.
点评:熟练掌握等差数列和等比数列的前n项和公式是解题的关键.
练习册系列答案
相关题目