题目内容
设函数f(x)=| 2x | ||
2x+
|
| OP |
| 1 |
| 2 |
| OP1 |
| OP2 |
| 1 |
| 2 |
| n |
| i=1 |
| i |
| n |
(3)记Tn为数列{
| 1 | ||||
(Sn+
|
| 2 |
分析:(1)中P点的纵坐标为定值需利用向量的知识,得到x1+x2=1,再代入函数解析式中求解;(2)中求sn需利用(1)的结论,运用数列中倒序相加求和的方法解之;(3)在(2)的条件下求出数列利用裂项相加法解出数列
通项,再利用裂项相加法求出Tn,再将不等式Tn<a(sn+1+
)变形,利用均值不等式求出
的最大值即可.
| 1 | ||||
(sn+
|
| 2 |
| Tn | ||
sn+1+
|
解答:(1)证明:∵
=
(
+
),∴P是P1P2的中点,∴x1+x2=1(2分)
∴y1+y2=f(x1)+f(x2)=
+
=
+
=
+
=
+
=1
∴yp=
(y1+y2) =
(6分)
(2)解:由(1)知x1+x2=1,f(x1)+f(x2)=y1+y2=1,f(1)=2-
,,Sn=f(
) +f(
) +…+f(
) +f(
)
相加得2Sn=f(1)+[f(
)+f(
)]+[f(
)+f(
)]+…+[f(
) +f(
)]+f(1)
=2f(1)+1+1+…+1(n-1个1)=n+3-2
∴Sn=
(10分)
(3)解:
=
=
=4(
-
)
Tn=4[(
-
)+(
-
)+…+(
-
)]=
(12分)
Tn<a(Sn+1+
)?a>
=
=
∵n+
≥8,当且仅当n=4时,取“=”∴
≤
=
,因此,a>
(14分)
| OP |
| 1 |
| 2 |
| OP1 |
| OP2 |
∴y1+y2=f(x1)+f(x2)=
| 2x1 | ||
2x1+
|
| 2x2 | ||
2x2+
|
| 2x1 | ||
2x1+
|
| 21-x1 | ||
21-x1+
|
=
| 2x1 | ||
2x1+
|
| 2 | ||
2+
|
| 2x1 | ||
2x1+
|
| ||
2x1+
|
∴yp=
| 1 |
| 2 |
| 1 |
| 2 |
(2)解:由(1)知x1+x2=1,f(x1)+f(x2)=y1+y2=1,f(1)=2-
| 2 |
| n |
| n |
| n-1 |
| n |
| 2 |
| n |
| 1 |
| n |
相加得2Sn=f(1)+[f(
| 1 |
| n |
| n-1 |
| n |
| 2 |
| n |
| n-2 |
| n |
| n-1 |
| n |
| 1 |
| n |
=2f(1)+1+1+…+1(n-1个1)=n+3-2
| 2 |
n+3-2
| ||
| 2 |
(3)解:
| 1 | ||||
(Sn+
|
| 1 | ||||
|
| 4 |
| (n+3)(n+4) |
| 1 |
| n+3 |
| 1 |
| n+4 |
Tn=4[(
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n+3 |
| 1 |
| n+4 |
| n |
| n+4 |
Tn<a(Sn+1+
| 2 |
| Tn | ||
Sn+1+
|
| 2n |
| (n+4)2 |
| 2 | ||
n+
|
| 16 |
| n |
| 2 | ||
n+
|
| 2 |
| 8+8 |
| 1 |
| 8 |
| 1 |
| 8 |
点评:本题综合考查了指数函数和向量,基本不等式,数列的通项公式及其数列的求和方法和运算的基本技能等.指数函数与数列,不等式等其它知识的交汇命题,考查学生对知识的灵活应用及其综合分析推理的能力.
练习册系列答案
相关题目