题目内容

在直角坐标系中,为坐标原点,如果一个椭圆经过点P(3,),且以点F(2,0)为它的一个焦点.

(1)求此椭圆的标准方程;

(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.

 

【答案】

(1);(2).

【解析】

试题分析:(1)既然是求椭圆的标准方程,那么另一个焦点必定是点,即,可得椭圆标准方程为;(2)只要知道本题中(斜率存在时),利用这个等式可迅速求出结论,

试题解析:(1)设椭圆方程为:

则有:  解得:

故所求椭圆方程为.         5分

(2)设

则有

两式相减,当时,,又因为

,整理得:,当时,中点满足上式.

综上所述,所求轨迹方程为.10分

考点:(1)椭圆的标准方程;(2)轨迹方程.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网