题目内容
已知函数
.
(Ⅰ)求f(x)的最大值及最小正周期;
(Ⅱ)求使f(x)≥2的x的取值范围
解:(Ⅰ)∵f(x)=sin(2x+
)+sin(2x-
)+2cos2x
=sin2xcos
+cos2xsin
+sin2xcos
-cos2xsin
+cos2x+1
=
sin2x+cos2x+1
= 2sin(2x+
)+1
∴f(x)max=2+1=3
(Ⅱ)∵f(x)≥2
∴ 2sin(2x+
)+1≥2
∴sin(2x+
)≥
∴ 2kx+
≤2x+
≤2k
+
k
≤x≤k
+
(k∈Z)
∴使f(x) ≥2的x的取值范围是{x|k
≤x≤k
+
,k∈Z}
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|