题目内容

已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(﹣1,f(﹣1))处的切线方程为6x﹣y+7=0.

(Ⅰ)求函数y=f(x)的解析式;

(Ⅱ)求函数y=f(x)的单调区间.

考点:

导数的几何意义;利用导数研究函数的单调性.

分析:

(Ⅰ)求解析式,只需把a,b,d三个字母求出即可.已知点P(0,2)满足f(x),得到d,又点M(﹣1,f(﹣1))处的切线方程为6x﹣y+7=0,可以得到f(﹣1)的值,并且得到f(x)在x=﹣1处的导数为6.

(Ⅱ)利用导数研究函数的单调性即可求出函数的单调区间.

解答:

解:(Ⅰ)∵f(x)的图象经过P(0,2),∴d=2,

∴f(x)=x3+bx2+ax+2,f'(x)=3x2+2bx+a.

∵点M(﹣1,f(﹣1))处的切线方程为6x﹣y+7=0

∴f'(x)|x=﹣1=3x2+2bx+a|x=﹣1=3﹣2b+a=6①,

还可以得到,f(﹣1)=y=1,即点M(﹣1,1)满足f(x)方程,得到﹣1+b﹣a+2=1②

由①、②联立得b=a=﹣3

故所求的解析式是f(x)=x3﹣3x2﹣3x+2.

(Ⅱ)f'(x)=3x2﹣6x﹣3.,令3x2﹣6x﹣3=0,即x2﹣2x﹣1=0.

解得.当

故f(x)的单调增区间为(﹣∞,1﹣),(1+,+∞);单调减区间为(1﹣,1+

点评:

本题主要考查了两个知识点,一是导数的几何意义,二是利用导数研究函数的单调性,属于函数这一内容的基本知识,更应该熟练掌握.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网