题目内容
【题目】已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?
【答案】x=-2时,f(x) min=-3.
【解析】主要考查对数运算、二次函数、对数函数的图象和性质。
解:由f(-1)=-2 ,得:f(-1)=1-(lga+2)+lgb=-2,解之lga-lgb=1,
∴
=10,a=10b.
又由x∈R,f(x)≥2x恒成立.知:x2+(lga+2)x+lgb≥2x,即x2+xlga+lgb≥0,对x∈R恒成立,
由Δ=lg2a-4lgb≤0,整理得(1+lgb)2-4lgb≤0
即(lgb-1)2≤0,只有lgb=1,不等式成立.
即b=10,∴a=100.
∴f(x)=x2+4x+1=(2+x)2-3
当x=-2时,f(x) min=-3.
练习册系列答案
相关题目
【题目】
年
月
日是第二十七届“世界水日”,
月
日是第三十二届“中国水周”.我国纪念
年“世界水日”和“中国水周”活动的宣传主题为“坚持节水优先,强化水资源管理”.某中学课题小组抽取
、
两个小区各
户家庭,记录他们
月份的用水量(单位:
)如下表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)根据两组数据完成下面的茎叶图,从茎叶图看,哪个小区居民节水意识更好?
|
| |
| ||
| ||
| ||
|
(2)从用水量不少于
的家庭中,
、
两个小区各随机抽取一户,求
小区家庭的用水量低于
小区的概率.