题目内容

如图,在斜三棱柱ABC-A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,侧面B1BCC1与底面ABC所成的二面角为120°,E、F分别是棱B1C1、A1A的中点,
(Ⅰ)求A1A与底面ABC所成的角;
(Ⅱ)证明A1E∥平面B1FC;
(Ⅲ)求经过A1、A、B、C四点的球的体积。
(Ⅰ)解:过A1作A1H⊥平面ABC,垂足为H,
连结AH,并延长交BC于G,连结EG,
于是∠A1AH为A1A与底面ABC所成的角,
∵∠A1AB=∠A1AC,
∴AG为∠BAC的平分线,
又∵AB=AC,
∴AG⊥BC,且G为BC的中点,
因此,由三垂线定理,A1A⊥BC,
∵A1A∥B1B,且EG∥B1B,EG⊥BC,
于是∠AGE为二面角A-BC-E的平面角,
即∠AGE=120°,
由于四边形A1AGE为平行四边形,
得∠A1AG=60°,
所以,A1A与底面ABC所成的角为60°;
(Ⅱ)证明:设EG与B1C的交点为P,
则点P为EG的中点,连结PF,
在平行四边形AGEA1中,因F为A1A的中点,
故A1E∥FP,
而FP平面B1FC,A1E平面B1FC,
所以A1E∥平面B1FC。
(Ⅲ)解:连结A1C,
在△A1AC和△A1AB中,
由于AC=AB,∠A1AC=∠A1AB,A1A=A1A,
则△A1AC≌△A1AB,故A1C=A1B,
由已知得A1A=A1B=A1C=a,
又∵A1H⊥平面ABC,
∴H为△ABC的外心,
设所求球的球心为O,则O∈A1H,
且球心O与A1A中点的连线OF⊥A1A,
在Rt△A1FO中,
故所求球的半径
球的体积
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网