题目内容
cos
,sin
,-cos
的大小顺序是
| 3 |
| 2 |
| 1 |
| 10 |
| 7 |
| 4 |
-cos
>sin
>cos
| 7 |
| 4 |
| 1 |
| 10 |
| 3 |
| 2 |
-cos
>sin
>cos
.| 7 |
| 4 |
| 1 |
| 10 |
| 3 |
| 2 |
分析:利用诱导公式把三角函数的名称统一到余弦上,把角转化为(0,π)上的角,再利用余弦函数的单调性,
比较这几个数的大小.
比较这几个数的大小.
解答:解:由于sin
=cos(
-
),-cos
=cos(π-
),且 π>
>
-
>π-
>0,
而函数y=cosx 在(0,π)上是减函数,可得cos(π-
)>cos(
-
)>cos
,
即-cos
>sin
>cos
,
故答案为-cos
>sin
>cos
.
| 1 |
| 10 |
| π |
| 2 |
| 1 |
| 10 |
| 7 |
| 4 |
| 7 |
| 4 |
| 3 |
| 2 |
| π |
| 2 |
| 1 |
| 10 |
| 7 |
| 4 |
而函数y=cosx 在(0,π)上是减函数,可得cos(π-
| 7 |
| 4 |
| π |
| 2 |
| 1 |
| 10 |
| 3 |
| 2 |
即-cos
| 7 |
| 4 |
| 1 |
| 10 |
| 3 |
| 2 |
故答案为-cos
| 7 |
| 4 |
| 1 |
| 10 |
| 3 |
| 2 |
点评:本题主要考查余弦函数的单调性、诱导公式的应用,属于中档题.
练习册系列答案
相关题目
定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=x-2,则( )
A、f(sin
| ||||
B、f(sin
| ||||
| C、f(sin1)<f(cos1) | ||||
D、f(sin
|