题目内容
已知f(x)=(x-a)(x-b)-2(其中a<b),且α,β是方程f(x)=0的两根(α<β),则实数a,b,α,β的大小关系是( )A.α<a<b<β
B.α<a<β<b
C.a<α<b<β
D.a<α<β<b
【答案】分析:方法一:首先把方程化为一般形式,由于α,β是方程的解,根据根与系数的关系即可得到a,b,α,β之间的关系,然后对四者之间的大小关系进行讨论即可判断.
方法二:可作出w=(x-a)(x-b)与y=(x-a)(x-b)-2的图象,由图象比较即可得到结论
解答:解:方法1:方程化为一般形式得:x2-(a+b)x+ab-2=0,
∵α,β是方程(x-a)(x-b)-2=0的两根,∴α+β=a+b
f(α)=0,f(β)=0,f(a)<0,f(α)<0
又二次函数图象开口向上,所以必有
a<α<β<b;
故选A
方法2:令w=(x-a)(x-b),作出图象抛物线与x轴交于点a,b.则y=(x-a)(x-b)-2的图象是将w向下平移2个单位得到,如图则α、β是抛物线y与x轴的两个交点.在图上可以直接看到α<a<b<β.
故选A
点评:本题考查了一元二次方程的根与系数之间的关系,对a,b,α,β大小关系的讨论是此题的难点.
方法二:可作出w=(x-a)(x-b)与y=(x-a)(x-b)-2的图象,由图象比较即可得到结论
解答:解:方法1:方程化为一般形式得:x2-(a+b)x+ab-2=0,
∵α,β是方程(x-a)(x-b)-2=0的两根,∴α+β=a+b
f(α)=0,f(β)=0,f(a)<0,f(α)<0
又二次函数图象开口向上,所以必有
故选A
方法2:令w=(x-a)(x-b),作出图象抛物线与x轴交于点a,b.则y=(x-a)(x-b)-2的图象是将w向下平移2个单位得到,如图则α、β是抛物线y与x轴的两个交点.在图上可以直接看到α<a<b<β.
故选A
点评:本题考查了一元二次方程的根与系数之间的关系,对a,b,α,β大小关系的讨论是此题的难点.
练习册系列答案
相关题目
已知f (x)=sin (x+
),g (x)=cos (x-
),则下列命题中正确的是( )
| π |
| 2 |
| π |
| 2 |
| A、函数y=f(x)•g(x)的最小正周期为2π | ||||
| B、函数y=f(x)•g(x)是偶函数 | ||||
| C、函数y=f(x)+g(x)的最小值为-1 | ||||
D、函数y=f(x)+g(x)的一个单调增区间是[-
|