题目内容
已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
+
,求数列{bn}的前n项和Sn;
(Ⅲ)设cn=2n(
-λ),若数列{cn}是单调递减数列,求实数λ的取值范围.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
| an |
| an+1 |
| an+1 |
| an |
(Ⅲ)设cn=2n(
| an+1 |
| n |
(Ⅰ)由题知
=a1a7,设等差数列{an}的公差为d,
则(a1+2d)2=a1(a1+6d),
a1d=2d2,∵d≠0
∴a1=2d. …(1分)
又∵a2=3,
∴a1+d=3a1=2,d=1…(2分)
∴an=n+1. …(3分)
(Ⅱ)∵bn=
+
=
+
=2+
-
. …(4分)
∴Sn=b1+b2+…+bn=(2+
-
)+(2+
-
)+…+(2+
-
)=2n+
. …(6分)
( III)cn=2n(
-λ)=2n(
-λ),使数列{cn}是单调递减数列,
则cn+1-cn=2n(
-
-λ)<0对n∈N*都成立 …(7分)
即
-
-λ<0?λ>(
-
)max…(8分)
设f(n)=
-
,
f(n+1)-f(n)=
-
-
+
=
+
-
=2+
+1+
-3-
=
…(9分)
∴f(1)<f(2)=f(3)>f(4)>f(5)>…
当n=2或n=3时,f(n)max=
,
∴(
-
)max=
所以λ>
. …(10分)
| a | 23 |
则(a1+2d)2=a1(a1+6d),
a1d=2d2,∵d≠0
∴a1=2d. …(1分)
又∵a2=3,
∴a1+d=3a1=2,d=1…(2分)
∴an=n+1. …(3分)
(Ⅱ)∵bn=
| an |
| an+1 |
| an+1 |
| an |
| n+1 |
| n+2 |
| n+2 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Sn=b1+b2+…+bn=(2+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
( III)cn=2n(
| an+1 |
| n |
| n+2 |
| n |
则cn+1-cn=2n(
| 2(n+3) |
| n+1 |
| n+2 |
| n |
即
| 2(n+3) |
| n+1 |
| n+2 |
| n |
| 2(n+3) |
| n+1 |
| n+2 |
| n |
设f(n)=
| 2(n+3) |
| n+1 |
| n+2 |
| n |
f(n+1)-f(n)=
| 2(n+4) |
| n+2 |
| n+3 |
| n+1 |
| 2(n+3) |
| n+1 |
| n+2 |
| n |
=
| 2(n+4) |
| n+2 |
| n+2 |
| n |
| 3(n+3) |
| n+1 |
=2+
| 4 |
| n+2 |
| 2 |
| n |
| 6 |
| n+1 |
=
| 2(2-n) |
| n(n+1)(n+2) |
∴f(1)<f(2)=f(3)>f(4)>f(5)>…
当n=2或n=3时,f(n)max=
| 4 |
| 3 |
∴(
| 2(n+3) |
| n+1 |
| n+2 |
| n |
| 4 |
| 3 |
所以λ>
| 4 |
| 3 |
练习册系列答案
相关题目
已知公差不为0的等差数列{an}满足a1,a3,a4成等比关系,Sn为{an}的前n项和,则
的值为( )
| S3-S2 |
| S5-S3 |
| A、2 | ||
| B、3 | ||
C、
| ||
| D、不存在 |