题目内容
在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1,C1,B三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为10,设A1C1的中点为O1.
(Ⅰ)求棱AA1的长
(Ⅱ)求证:面A1BC1⊥面BDD1O1
(Ⅲ)求异面直线BO1与A1D1所成角的余弦值.
得SABCD×h-
即2×2×h-
故A1A的长为3.(4分)
(Ⅱ)如图,连接AC、BO1
∵ABCD-A1B1C1D1是长方体,
∴A1C1∥AC.
∴四边形ABCD是正方形.
∴AC⊥BD;
∵D1D⊥平面ABCD,AC?平面ABCD,
∴AC⊥D1D又AC与BD相交
∴AC⊥平面D1DC. 由A1C1∥AC.
∴A1C1⊥平面D1DC.A1C1?平面A1BC1.
∴平面A1BC1⊥平面BDD1. (9分)
(Ⅲ)因为在长方体中A1D1∥BC,
所以∠O1BC即为异面直线BO1与A1D1所成的角(或其补角).(11分)
在△O1BC中,计算可得O1B=O1C=
则∠O1BC的余弦值为
故异面直线BO1与A1D1所成角的余弦值为:
分析:(Ⅰ)先设出棱A1A的长,求出长方体的体积和被截的几何体的体积,根据条件建立等量关系,求出所求;
(Ⅱ)根据题意四边形ABCD是正方形,可知AC⊥BD,根据D1D⊥平面ABCD,可知AC⊥平面D1DC,由A1C1∥AC,可得A1C1⊥平面D1DC.从而可证平面A1BC1⊥平面BDD1.
(Ⅲ)先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,∠O1BC即为异面直线BO1与A1D1所成的角(或其补角),在三角形中再利用余弦定理求出此角即可.
点评:本题主要考查空间线面关系、几何体的表面积与体积等知识,考查数形结合的数学思想方法,以及空间想象能力、运算求解能力
练习册系列答案
相关题目