题目内容
计算:
=________.
-i
分析:先进行复数的除法运算,整理出底数的最简形式,再用i的幂运算,i1=i,i2=-1,=-i,i4=1,的周期性变化,直接求出表达式的值.
解答:∵
=
因为i1+i2+i3+i4=0,
所以i1+i2+i3+…+i2008=502(i1+i2+i3+i4)=0.
∴原式=0+(-i)=-i
故答案为:-i.
点评:本题是考查复数的i的幂运算和复数的除法运算,解题的关键是复数的虚数单位周期性的应用,考查计算能力,是一个基础题.
分析:先进行复数的除法运算,整理出底数的最简形式,再用i的幂运算,i1=i,i2=-1,=-i,i4=1,的周期性变化,直接求出表达式的值.
解答:∵
因为i1+i2+i3+i4=0,
所以i1+i2+i3+…+i2008=502(i1+i2+i3+i4)=0.
∴原式=0+(-i)=-i
故答案为:-i.
点评:本题是考查复数的i的幂运算和复数的除法运算,解题的关键是复数的虚数单位周期性的应用,考查计算能力,是一个基础题.
练习册系列答案
相关题目