题目内容
已知复数z1满足:|z1|=1+3i-z1.复数z2满足:z2•(1-i)+(3-2i)=4+i.
(1)求复数z1,z2;
(2)在复平面内,O为坐标原点,记复数z1,z2对应的点分别为A,B.求△OAB的面积.
(1)求复数z1,z2;
(2)在复平面内,O为坐标原点,记复数z1,z2对应的点分别为A,B.求△OAB的面积.
分析:(1)设z1=x+yi(x,y∈R),由|z1|=1+3i-z1,得
=1+3i-(x+yi)=1-x+(3-y)i,根据复数相等即可得出;而z2•(1-i)=1+3i,可化为z2=
,再利用复数的运算法则即可得出;
(2)由(1)知,
=(-4,3),
=(-1,2),利用复数模的计算公式即可得出;再利用
•
=|
| |
|cos∠AOB,即可得出cos∠AOB,再利用平方关系即可得出sin∠AOB.再利用三角形面积计算公式即可.
| x2+y2 |
| 1+3i |
| 1-i |
(2)由(1)知,
| OA |
| OB |
| OA |
| OB |
| OA |
| OB |
解答:解:(1)设z1=x+yi(x,y∈R),
由|z1|=1+3i-z1,得
=1+3i-(x+yi)=1-x+(3-y)i,
∴
,解得
.
∴z1=-4+3i.
而z2•(1-i)=1+3i,
∴z2=
=
=
=-1+2i,
(2)由(1)知,
=(-4,3),
=(-1,2),∴|
=
=5,|
|=
=
.
由
•
=|
| |
|cos∠AOB,得(-4)×(-1)+3×2=5
cos∠AOB,
解得cos∠AOB=
,∴sin∠AOB=
.
∴△OAB的面积S=
×5×
×
=
.
由|z1|=1+3i-z1,得
| x2+y2 |
∴
|
|
∴z1=-4+3i.
而z2•(1-i)=1+3i,
∴z2=
| 1+3i |
| 1-i |
| (1+3i)(1+i) |
| (1-i)(1+i) |
| -2+4i |
| 2 |
(2)由(1)知,
| OA |
| OB |
| OA| |
| (-4)2+32 |
| OB |
| (-1)2+22 |
| 5 |
由
| OA |
| OB |
| OA |
| OB |
| 5 |
解得cos∠AOB=
| 2 | ||
|
| 1 | ||
|
∴△OAB的面积S=
| 1 |
| 2 |
| 5 |
| 1 | ||
|
| 5 |
| 2 |
点评:熟练掌握复数的运算法则、复数相等、数量积运算、三角形的面积计算公式等是解题的关键.
练习册系列答案
相关题目