题目内容
设直线l与球O有且仅有一公共点P,从直线l出发的两个半平面截球O的两个截面圆O1和圆O2的半径1和2,若这两个半平面α,β所成二面角为120,则球O的表面积为 .
【答案】分析:过P与O作直线l的垂面,画出截面图形,设出球的半径,通过解三角形,利用转化思想求出球的半径的平方,然后求出球的表面积.
解答:
解:过P与O作直线l的垂面,画出截面图形,如图
设球的半径为r,作OE⊥QP,OF⊥PM,则EP=1,PF=2,
设∠OPE=α,
,
所以
,
即sin
,sin2α+cos2α=1解得
cos2α=
所以r2=
;
所以球的表面积为:4πr2=4π×
=
.
故答案为:
.
点评:本题是中档题,考查二面角的有关知识,考查转化思想的应用,空间想象能力,计算能力.
解答:
设球的半径为r,作OE⊥QP,OF⊥PM,则EP=1,PF=2,
设∠OPE=α,
所以
即sin
cos2α=
所以r2=
所以球的表面积为:4πr2=4π×
故答案为:
点评:本题是中档题,考查二面角的有关知识,考查转化思想的应用,空间想象能力,计算能力.
练习册系列答案
相关题目