题目内容
证明a4+b4+c4≥a2b2+b2c2+c2a2≥abc(a+b+c).?
证明:∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,?
∴2(a4+b4+c4)≥2(a2b2+b2c2+c2a2),?
即a4+b4+c4≥a2b2+b2c2+c2a2.?
又a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,?
c2a2+a2b2≥2a2bc,?
∴2(a2b2+b2c2+c2a2)≥2(ab2c+abc2+a2bc),?
即a2b2+b2c2+c2a2≥ab2c+abc2+a2bc?
=abc(a+b+c).?
∴原不等式成立.
练习册系列答案
相关题目