题目内容
设正数数列{an}的前n项之和为Sn满足Sn=(
)2
①先求出a1,a2,a3,a4的值,然后猜想数列{an}的通项公式,并用数学归纳法加以证明.
②设bn=
,数列{bn}的前n项和为Tn.
| an+1 |
| 2 |
①先求出a1,a2,a3,a4的值,然后猜想数列{an}的通项公式,并用数学归纳法加以证明.
②设bn=
| 1 |
| anan+1 |
①在 Sn=(
)2中,令n=1可得,a1=(
)2,∴a1=1. 令n=2 可得,1+a2=(
)2,
a2 =3,同理可求,a3=5,a4=7.
猜测an=2n-1.
证明:当n=1时,猜测显然成立,假设 ak=2k-1,
则由 ak+1=sk+1-sk=(
)2-(
)2=(
)2-k2,解得 ak+1=2k+1,
故n=k+1时,猜测仍然成立,
③∵bn=
=
=
(
-
),
∴Tn=
[(1-
)+(
-
)+(
-
)+…+(
-
)]=
(1-
)
=
.
| an+1 |
| 2 |
| a1+1 |
| 2 |
| a2+1 |
| 2 |
a2 =3,同理可求,a3=5,a4=7.
猜测an=2n-1.
证明:当n=1时,猜测显然成立,假设 ak=2k-1,
则由 ak+1=sk+1-sk=(
| ak+1+1 |
| 2 |
| ak+1 |
| 2 |
| ak+1+1 |
| 2 |
故n=k+1时,猜测仍然成立,
③∵bn=
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
练习册系列答案
相关题目