题目内容
【题目】已知椭圆
的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过点
的直线
与椭圆
相交于
两点,点
关于原点的对称点为
,若点
总在以线段
为直径的圆内,求
的取值范围.
【答案】(1)
(2)![]()
【解析】试题分析:(I)由题意列出方程组求出
,
,由此能求出椭圆
的方程.(Ⅱ)当直线
的斜率不存在时,
的方程为
,
,点B在椭圆内,由
,得
,由此利用根的判别式、韦达定理、弦长公式、由此能求出
的取值范围.
试题解析:(I)解:由题意,得:
又因为![]()
解得
,所以椭圆C的方程为
.
(II)当直线
的斜率不存在时,由题意知
的方程为x=0,
此时E,F为椭圆的上下顶点,且
,
因为点
总在以线段
为直径的圆内,且
,
所以
,故点B在椭圆内.
当直线
的斜率存在时,设
的方程为
.
由方程组
得
,
因为点B在椭圆内,
所以直线
与椭圆C有两个公共点,即
.
设
,则
.
设EF的中点
,则
,
所以
.所以
,
,
因为点D总在以线段EF为直径的圆内,所以
对于
恒成立.
所以
.
化简,得
,整理,得
,
而
(当且仅当k=0时等号成立)所以
,
由m>0,得
.综上,m的取值范围是
.
练习册系列答案
相关题目