题目内容
(本题满分16分)
函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线3x+y+2=0.
(1)求a,b的值; (2)求函数的极大值与极小值的差.
【答案】
(1)a=-1,b=0
(2)4
【解析】(1)f ¢(x)=3x2+6ax+3b.令f ¢(x)=0,得3x2+6ax+3b=0(Ⅰ),因为f(x)在x=2处有极值,所以,x=2是方程(Ⅰ)的根,代入得4+4a+b=0 ①;又图象在x=1处的切线平行于直线3x+y+2=0,故y¢|x=1=-3,即3+6a+3b=-3 ②.所以由①,②解得a=-1,b=0.
(2)由(1)知f(x)=x3-3x2+c,f ¢(x)=3x2-6x.f ¢(x)=0的另一个根为x=0.列表如下:
|
x |
(-∞,0) |
0 |
(0,2) |
2 |
(2,+∞) |
|
f ¢(x) |
+ |
0 |
- |
0 |
+ |
|
f(x) |
↗ |
极大值 |
↘ |
极小值 |
↗ |
因此,当x=0时,f(x)有极大值f(0)=c;当x=2时,f(x)有极小值f(2)=c-4.所以,所求的极大值与极小值之差为c-(c-4)=4.
练习册系列答案
相关题目