题目内容

已知{an}满足:
12
a1
+
22
a2
+
32
a3
+…+
n2
an
=(
n(n+1)
2
)2
 (n=1,2,3,…).
(Ⅰ) 求{an}的通项公式;
(Ⅱ) 若数列{bn}满足,bn=
a2n
2an+1
(n=1,2,3,…),试{bn}前n项的和Sn
(Ⅰ)由
12
a1
+
22
a2
+…+
n2
an
=(
n(n+1)
2
)2

当n≥2时,
12
a1
+
22
a2
+…+
(n-1)2
an-1
=(
n(n-1)
2
)2

①-②得:
n2
an
=
n(n+1)+n(n-1)
2
×
n(n+1)-n(n-1)
2
=n3
所以,an=
1
n
(n≥2).
当n=1时,a1=1符合an=
1
n
,所以,an=
1
n

(Ⅱ)由bn=
an2
2an+1
=
1
n2
2
n
+1
=
1
n(n+2)

所以,Sn=b1+b2+…+bn
=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n-1
-
1
n+1
+
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
2n+3
2(n+1)(n+2)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网