题目内容
已知{an}满足:
+
+
+…+
=(
)2 (n=1,2,3,…).
(Ⅰ) 求{an}的通项公式;
(Ⅱ) 若数列{bn}满足,bn=
(n=1,2,3,…),试{bn}前n项的和Sn.
| 12 |
| a1 |
| 22 |
| a2 |
| 32 |
| a3 |
| n2 |
| an |
| n(n+1) |
| 2 |
(Ⅰ) 求{an}的通项公式;
(Ⅱ) 若数列{bn}满足,bn=
| ||
| 2an+1 |
(Ⅰ)由
+
+…+
=(
)2①
当n≥2时,
+
+…+
=(
)2②
①-②得:
=
×
=n3,
所以,an=
(n≥2).
当n=1时,a1=1符合an=
,所以,an=
;
(Ⅱ)由bn=
=
=
.
所以,Sn=b1+b2+…+bn
=
(1-
+
-
+
-
+…+
-
+
-
)
=
(1+
-
-
)
=
-
.
| 12 |
| a1 |
| 22 |
| a2 |
| n2 |
| an |
| n(n+1) |
| 2 |
当n≥2时,
| 12 |
| a1 |
| 22 |
| a2 |
| (n-1)2 |
| an-1 |
| n(n-1) |
| 2 |
①-②得:
| n2 |
| an |
| n(n+1)+n(n-1) |
| 2 |
| n(n+1)-n(n-1) |
| 2 |
所以,an=
| 1 |
| n |
当n=1时,a1=1符合an=
| 1 |
| n |
| 1 |
| n |
(Ⅱ)由bn=
| an2 |
| 2an+1 |
| ||
|
| 1 |
| n(n+2) |
所以,Sn=b1+b2+…+bn
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
练习册系列答案
相关题目