题目内容
??
答案:40
??解析:×=,×=40.
(本小题满分14分)
在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切
于坐标原点.椭圆与圆的一个交点到椭圆两焦点的距离之和为.
(1)求圆的方程;
(2)试探究圆上是否存在异于原点的点,使到椭圆右焦点F的距离等于
线段的长.若存在,请求出点的坐标;若不存在,请说明理由.
在平面直角坐标系中,已知圆心在直线上,半径为的圆C经过坐标原点O,椭圆与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足,求点P
如图,在半径为的圆中,弦、相交于,,,则圆心到弦的距离为 .
在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.
(Ⅰ)当点在圆上运动时,求点的轨迹方程;
(Ⅱ)已知,是曲线上的两点,若曲线上存在点,满足(为坐标原点),求实数的取值范围.
(本小题满分14分)
在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切于坐标原点.椭圆E:与圆的一个交点到椭圆E的两焦点的距离之和为.
(Ⅰ)求圆和椭圆E的方程;
(Ⅱ)试探究圆上是否存在异于原点的点,使到椭圆右焦点F的距离等于线段的长.若存在,请求出点的坐标;若不存在,请说明理由.