题目内容
18.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有42种(用数字作答).分析 根据题意,分2步进行分析,①、先在编号为1,2,3的三个盒子中,取出2个盒子,②、将4个小球放进取出的2个盒子中,且不能有空盒,用排除法分析即可;由分步计数原理计算可得答案.
解答 解:根据题意,分2步进行分析,
①、先在编号为1,2,3的三个盒子中,取出2个盒子,有C32=3种取法,
②、将4个小球放进取出的2个盒子中,每个小球有2种放法,则4个小球一共有2×2×2×2=24种,
其中有1个空盒,即4个小球都放进其中1个盒子的情况有2种;
则将4个小球放进取出的2个盒子中,且不能有空盒,其放法数目为(24-2)=14种,
故四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法为3×14=42种;
故答案为:42.
点评 本题考查排列组合的应用,解题时注意盒子与小球都是不同的,其次注意第②步时利用排除法分析较为简便.
练习册系列答案
相关题目
13.向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(2,1)$,则( )
| A. | $\overrightarrow a$与$\overrightarrow b$的夹角为30° | B. | $\overrightarrow a$与$\overrightarrow b$的夹角为y=ax-a(a>0,a≠1) | ||
| C. | $\overrightarrow a⊥\overrightarrow b$ | D. | $\overrightarrow a$∥$\overrightarrow b$ |
3.在△ABC中,若a=2,∠B=60°,b=$\sqrt{7}$,则BC边上的高等于( )
| A. | $\frac{3\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | 3 | D. | $\sqrt{5}$ |
10.定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和.如:1=$\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$,1=$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}$,1=$\frac{1}{2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}$,
依此类推可得:1=$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{13}+\frac{1}{n}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}$,其中n∈N*.设1≤x≤13,1≤y≤n,则$\frac{x+y+2}{x+1}$的最小值为( )
依此类推可得:1=$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{13}+\frac{1}{n}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}$,其中n∈N*.设1≤x≤13,1≤y≤n,则$\frac{x+y+2}{x+1}$的最小值为( )
| A. | $\frac{23}{2}$ | B. | $\frac{8}{7}$ | C. | $\frac{5}{2}$ | D. | $\frac{34}{3}$ |
8.在△ABC中,∠A、B、C对边分别为a、b、c,A=60°,b=1,这个三角形的面积为$\sqrt{3}$,则a=( )
| A. | 2 | B. | $\sqrt{10}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{13}$ |