题目内容

已知复数z=
3
2
-
1
2
i
ω=
2
2
+
2
2
i
.复数
.
,z2ω3在复数平面上所对应的点分别为P,Q.
证明△OPQ是等腰直角三角形(其中O为原点).
分析:利用复数三角形式,化简复数z=
3
2
-
1
2
i
ω=
2
2
+
2
2
i

然后计算复数
.
,z2ω3,计算二者的夹角和模,即可证得结论.
解答:解法一:z=
3
2
-
1
2
i=cos(-
π
6
)+isin(-
π
6
)
ω=
2
2
+
2
2
i=cos
π
4
+isin
π
4

于是zω=cos
π
12
+isin
π
12
.
=cos(-
π
12
)+isin(-
π
12
)
z2ω3=[cos(-
π
3
)+isin(-
π
3
)]×(cos
4
+isin
4
)
=cos
12
+isin
12

因为OP与OQ的夹角为
12
-(-
π
12
)=
π
2
,所以OP⊥OQ.
因为|OP|=|
.
z?
|=1.|OQ|=|z2?3|=1
,所以|OP|=|OQ|
由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.
解法二:
因为z=
3
2
-
1
2
i=cos(-
π
6
)+isin(-
π
6
)
,所以z3=-i.
因为ω=
2
2
+
2
2
i=cos
π
4
+isin
π
4
,所以ω4=-1
于是
z2ω3
.
=
z2ω3
.
=
z3ω4
|z|2|ω|2
=i

由此得OP⊥OQ,|OP|=|OQ|.
由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.
点评:本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网