题目内容
已知椭圆(1)求椭圆的离心率;
(2)若△ABF1的面积小于等于
【答案】分析:(1)分别过A,B作准线的垂线,垂足为A1,B1由直线AB的倾斜角为
可得,2(AA1-BB1)=AB=AF+BF=e(AA1+BB1),再由
可得3AA1=5BB1,从而结合定义可求离心率e
(2)由
及
可得15x2-24cx=0,而
=
可得c≤1,结合
可求
解答:解:分别过A,B作准线的垂线,垂足为A1,B1
因为直线AB的倾斜角为
所以2(AA1-BB1)=AB=AF+BF=e(AA1+BB1)
由
可得3AA1=5BB1
所以
(2)由
及
可得15x2-24cx=0
所以,
因为
=
可得c≤1
又因为
,所以
点评:求圆锥曲线的方程一般利用待定系数法;解决直线与圆锥曲线的位置关系一般讲直线的方程与圆锥曲线的方程联立消去一个未知数得到关于另一个未知数的二次方程,利用韦达定理得到交点的坐标的关系,作为突破口来找思路.
(2)由
解答:解:分别过A,B作准线的垂线,垂足为A1,B1
因为直线AB的倾斜角为
所以2(AA1-BB1)=AB=AF+BF=e(AA1+BB1)
由
所以
(2)由
所以,
因为
又因为
点评:求圆锥曲线的方程一般利用待定系数法;解决直线与圆锥曲线的位置关系一般讲直线的方程与圆锥曲线的方程联立消去一个未知数得到关于另一个未知数的二次方程,利用韦达定理得到交点的坐标的关系,作为突破口来找思路.
练习册系列答案
相关题目