题目内容
12.已知数列{an}满足a1=2,an+1+an=4n+3(n∈N*).(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn.
分析 (I)由数列{an}满足a1=2,an+1+an=4n+3(n∈N*),可得当n=1时,解得a2=5.当n≥2时,an+2-an=4,因此数列{an}的奇数项构成等差数列,首项为2,公差为4;偶数项构成等差数列,首项为5,公差为4.分别利用等差数列的通项公式即可得出.
(II)对n分类讨论,利用等差数列的前n项和公式即可得出.
解答 解:(I)∵数列{an}满足a1=2,an+1+an=4n+3(n∈N*),∴当n=1时,a2+a1=7,解得a2=5.
当n≥2时,an+2+an+1=4n+7,∴an+2-an=4,
∴数列{an}的奇数项构成等差数列,首项为2,公差为4;偶数项构成等差数列,首项为5,公差为4.
∴a2k-1=2+4(k-1)=4k-2,即n为奇数时:an=2n.
a2k=5+4(k-1)=4k+1,即n为偶数时:an=2n+1.
∴${a}_{n}=\left\{\begin{array}{l}{2n,n为奇数}\\{2n+1,n为偶数}\end{array}\right.$.
(II)当n为偶数时,Sn=[2+6+…+2(n-1)]+[5+9+…+(2n+1)]=$\frac{\frac{n}{2}(2+2n-2)}{2}$+$\frac{\frac{n}{2}(5+2n+1)}{2}$=${n}^{2}+\frac{3}{2}n$.
当n为奇数时,Sn=Sn+1-an+1=$(n+1)^{2}+\frac{3}{2}(n+1)-[2(n+1)+1]$=$\frac{2{n}^{2}+3n-1}{2}$.
∴Sn=$\left\{\begin{array}{l}{\frac{1}{2}(2{n}^{2}+3n-1),n为奇数时}\\{{n}^{2}+\frac{3}{2}n,n为偶数}\end{array}\right.$.
点评 本题考查了等差数列的通项公式及其前n项和公式,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.
| A. | [0,$\frac{π}{8}$]与[$\frac{5π}{8},π$] | B. | [$\frac{3π}{8}$,$\frac{5π}{8}$] | C. | [0,$\frac{π}{8}$]与[$\frac{3π}{8}$,$\frac{5π}{8}$] | D. | [$\frac{π}{8},\frac{5π}{8}$] |
| A. | a<1<b | B. | a<b<1 | C. | b<1<a | D. | 1<b<a |
| A. | ($\frac{3}{4}$,7) | B. | [$\frac{2}{3}$,5] | C. | [$\frac{2}{3}$,7] | D. | [$\frac{3}{4}$,7] |