ÌâÄ¿ÄÚÈÝ
ijµØÇøÍ¨¹ýÏȳõÊÔÔÙ¸´ÊÔÑ¡°ÎÀºÇòÔ˶¯Ô±£¬³õÊÔÒÀ´Î½øÐÐËÄÏî²âÊÔ£¬ÈôÑ¡ÊÖͨ¹ýÆäÖÐÁ½Ïî²âÊÔ£¬Ôò¿ÉÖ±½Ó½øÈ븴ÊÔ£¬²»ÔÙ½øÐÐÊ£ÓàÏî²âÊÔ£»ÈôÑ¡ÊÖǰÈýÏî²âÊÔ¾ù²»Í¨¹ý£¬Ôò²»½øÐеÚËÄÏî²âÊÔ£®¼ÙÉèÑ¡ÊÖ¼×ÔÚ³õÊÔÖÐͨ¹ýÿÏî²âÊԵĸÅÂʶ¼ÊÇ£¨1£©ÇóÑ¡ÊÖ¼×ǰÁ½Ïî²âÊÔ¾ù²»Í¨¹ýµÄ¸ÅÂÊ£»
£¨2£©ÉèÑ¡ÊּײμӳõÊÔ²âÊԵĴÎÊýΪX£¨X¡Ý2£©£¬ÇóXµÄ·Ö²¼Áм°XµÄÊýѧÆÚÍû£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¼Ç¡°Ñ¡ÊÖ¼×ǰÁ½´Î²âÊÔ¾ù²»Í¨¹ý¡±ÎªÊ¼þA£¬ÔòP£¨A£©=
=
£¬ÓÉ´ËÄÜÇó³öÑ¡ÊÖ¼×ǰÁ½´Î²âÊÔ¾ù²»Í¨¹ýµÄ¸ÅÂÊ£®
£¨2£©ÓÉÌâÉèÖªXµÄȡֵΪ2£¬3£¬4£¬·Ö±ðÇó³öP£¨X=2£©£¬P£¨X=3£©£¬P£¨X=4£©£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍEX£®
½â´ð£º½â£º£¨1£©¼Ç¡°Ñ¡ÊÖ¼×ǰÁ½´Î²âÊÔ¾ù²»Í¨¹ý¡±ÎªÊ¼þA£¬
ÔòP£¨A£©=
=
£¬
¼´Ñ¡ÊÖ¼×ǰÁ½´Î²âÊÔ¾ù²»Í¨¹ýµÄ¸ÅÂÊΪ
£®
£¨2£©ÓÉÌâÉèÖªXµÄȡֵΪ2£¬3£¬4£¬
P£¨X=2£©=
=
£¬
P£¨X=3£©=
=
£¬
P£¨X=4£©=
£¬
¹ÊXµÄ·Ö²¼ÁÐΪ
EX=2×
+
+4×
=
£®
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵļÆË㣬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£¬È·¶¨±äÁ¿µÄȡֵ£¬Çó³öÏàÓ¦µÄ¸ÅÂÊÊǹؼü£®
£¨2£©ÓÉÌâÉèÖªXµÄȡֵΪ2£¬3£¬4£¬·Ö±ðÇó³öP£¨X=2£©£¬P£¨X=3£©£¬P£¨X=4£©£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍEX£®
½â´ð£º½â£º£¨1£©¼Ç¡°Ñ¡ÊÖ¼×ǰÁ½´Î²âÊÔ¾ù²»Í¨¹ý¡±ÎªÊ¼þA£¬
ÔòP£¨A£©=
¼´Ñ¡ÊÖ¼×ǰÁ½´Î²âÊÔ¾ù²»Í¨¹ýµÄ¸ÅÂÊΪ
£¨2£©ÓÉÌâÉèÖªXµÄȡֵΪ2£¬3£¬4£¬
P£¨X=2£©=
P£¨X=3£©=
P£¨X=4£©=
¹ÊXµÄ·Ö²¼ÁÐΪ
| X | 2 | 3 | 4 |
| P | | | |
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵļÆË㣬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£¬È·¶¨±äÁ¿µÄȡֵ£¬Çó³öÏàÓ¦µÄ¸ÅÂÊÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿