题目内容
设a为锐角,若sin(α-
)=
,则cos(2α-
)的值为
| π |
| 6 |
| 3 |
| 5 |
| π |
| 12 |
-
17
| ||
| 50 |
-
.17
| ||
| 50 |
分析:由a为锐角,sin(α-
)=
,可得cos(α-
)=
,利用二倍角公式求出sinα=sin[(α-
)+
]和cosα=cos[(α-
)+
]的值,可得sin2α和 cos2α 的值,
再由sin
和cos
的值,从而求得cos(2α-
)=cos2αcos
+sin2αsin
的值.
| π |
| 6 |
| 3 |
| 5 |
| π |
| 6 |
| 4 |
| 5 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
再由sin
| π |
| 12 |
| π |
| 12 |
| π |
| 12 |
| π |
| 12 |
| π |
| 12 |
解答:解:由于a为锐角,若sin(α-
)=
,则cos(α-
)=
,
∴sinα=sin[(α-
)+
]=sin(α-
)cos
+cos(α-
)sin
=
×
+
×
=
,
cosα=cos[(α-
)+
]=cos(α-
)cos
-sin(α-
)sin
=
×
-
×
=
,
sin2α=2sinαcosα=
,cos2α=2cos2α-1=
.
再由sin
=
=
,cos
=
=
,
故 cos(2α-
)=cos2αcos
+sin2αsin
=
•
+
•
=-
.
| π |
| 6 |
| 3 |
| 5 |
| π |
| 6 |
| 4 |
| 5 |
∴sinα=sin[(α-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 3 |
| 5 |
| ||
| 2 |
| 4 |
| 5 |
| 1 |
| 2 |
4+3
| ||
| 10 |
cosα=cos[(α-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 4 |
| 5 |
| ||
| 2 |
| 3 |
| 5 |
| 1 |
| 2 |
4
| ||
| 10 |
sin2α=2sinαcosα=
7
| ||
| 50 |
7-24
| ||
| 50 |
再由sin
| π |
| 12 |
|
| ||||
| 4 |
| π |
| 12 |
|
| ||||
| 4 |
故 cos(2α-
| π |
| 12 |
| π |
| 12 |
| π |
| 12 |
7-24
| ||
| 50 |
| ||||
| 4 |
7
| ||
| 50 |
| ||||
| 4 |
17
| ||
| 50 |
点评:本题着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.
练习册系列答案
相关题目