题目内容
(2012•江苏)设a为锐角,若cos(a+
)=
,则sin(2a+
)的值为
.
| π |
| 6 |
| 4 |
| 5 |
| π |
| 12 |
17
| ||
| 50 |
17
| ||
| 50 |
分析:根据a为锐角,cos(a+
)=
为正数,可得a+
也是锐角,利用平方关系可得sin(a+
)=
.接下来配角,得到cosa=
,sina=
,再用二倍角公式可得sin2a=
,cos2a=
,最后用两角和的正弦公式得到sin(2a+
)=sin2acos
+cosasin
=
.
| π |
| 6 |
| 4 |
| 5 |
| π |
| 6 |
| π |
| 6 |
| 3 |
| 5 |
4
| ||
| 10 |
3
| ||
| 10 |
24-7
| ||
| 50 |
7+24
| ||
| 50 |
| π |
| 12 |
| π |
| 12 |
| π |
| 12 |
17
| ||
| 50 |
解答:解:∵a为锐角,cos(a+
)=
,
∴a+
也是锐角,且sin(a+
)=
=
∴cosa=cos[(a+
)-
]=
cos
+
sin
=
sina=sin[(a+
)-
]=
cos
-
sin
=
由此可得sin2a=2sinacosa=
,cos2a=cos2a-sin2a=
又∵sin
=sin(
-
)=
,cos
=cos(
-
)=
∴sin(2a+
)=sin2acos
+cosasin
=
•
+
•
=
故答案为:
| π |
| 6 |
| 4 |
| 5 |
∴a+
| π |
| 6 |
| π |
| 6 |
1-cos2(a+
|
| 3 |
| 5 |
∴cosa=cos[(a+
| π |
| 6 |
| π |
| 6 |
| 4 |
| 5 |
| π |
| 6 |
| 3 |
| 5 |
| π |
| 6 |
4
| ||
| 10 |
sina=sin[(a+
| π |
| 6 |
| π |
| 6 |
| 3 |
| 5 |
| π |
| 6 |
| 4 |
| 5 |
| π |
| 6 |
3
| ||
| 10 |
由此可得sin2a=2sinacosa=
24-7
| ||
| 50 |
7+24
| ||
| 50 |
又∵sin
| π |
| 12 |
| π |
| 3 |
| π |
| 4 |
| ||||
| 4 |
| π |
| 12 |
| π |
| 3 |
| π |
| 4 |
| ||||
| 4 |
∴sin(2a+
| π |
| 12 |
| π |
| 12 |
| π |
| 12 |
24-7
| ||
| 50 |
| ||||
| 4 |
7+24
| ||
| 50 |
| ||||
| 4 |
17
| ||
| 50 |
故答案为:
17
| ||
| 50 |
点评:本题要我们在已知锐角a+
的余弦值的情况下,求2a+
的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.
| π |
| 6 |
| π |
| 12 |
练习册系列答案
相关题目