题目内容
如图,在直三棱柱ABC?A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1A=
,M是CC1的中点.
![]()
(1)求证:A1B⊥AM;
(2)求二面角B ?AM?C的平面角的大小..
(1)见解析(2)45°
【解析】(1)以点C为原点,CB、CA、CC1所在直线为x,y,z轴,建立空间直角坐标系C-xyz,如图所示,
![]()
则B(1,0,0),A(0,
,0),A1(0,
,
),M
.
所以
=(1,-
,-
),
=
.
因为
·
=1×0+(-
)×(-
)+(-
)×
=0,所以A1B⊥AM.
(2)因为ABC ?A1B1C1是直三棱柱,所以CC1⊥平面ABC,又BC?平面ABC,所以CC1⊥BC.
因为∠ACB=90°,即BC⊥AC,又AC∩CC1=C,所以BC⊥平面ACC1A1,即BC⊥平面AMC.
所以
是平面AMC的一个法向量,
=(1,0,0).
设n=(x,y,z)是平面BAM的一个法向量,
=(-1,
,0),
=
.
由
得
,令z=2,得x=
,y=
.
所以n=(
,
,2)
因为|
|=1,|n|=2
,所以cos〈
,n〉=
=
,
因此二面角B ?AM?C的大小为45°
练习册系列答案
相关题目