题目内容
【题目】在棱长为1的正方体
中,点
是对角线
上的动点(点
与
不重合),则下列结论正确的是__________
![]()
①存在点
,使得平面
平面
;
②存在点
,使得平面
平面
;
③
的面积可能等于
;
④若
分别是
在平面
与平面
的正投影的面积,则存在点
,使得![]()
【答案】①②③④
【解析】
根据正方体的结构特征,利用线面位置关系的判定定理和性质定理,以及三角形的面积公式和投影的定义,即可求解,得到答案.
①如图所示,当
是
中点时,可知
也是
中点且
,
,
,所以
平面
,所以
,同理可知
,
且
,所以
平面
,
又
平面
,所以平面
平面
,故正确;
![]()
②如图所示,取
靠近
的一个三等分点记为
,记
,
,因为
,所以
,所以
为
靠近
的一个三等分点,
则
为
中点,又
为
中点,所以
,且
,
,
,所以平面
平面
,且
平面
,
所以
平面
,故正确;
![]()
③如图所示,作
,在
中根据等面积得:
,
根据对称性可知:
,又
,所以
是等腰三角形,
则
,故正确;
![]()
④如图所示,设
,
在平面
内的正投影为
,
在平面
内的正投影为
,所以
,
,当
时,解得:
,故正确.
![]()
故答案为 ①②③④
![]()
【题目】交强险是车主须为机动车购买的险种.若普通
座以下私家车投保交强险第一年的费用(基本保费)是
元,在下一年续保时,实行费率浮动制,其保费与上一年度车辆发生道路交通事故情况相联系,具体浮动情况如下表:
类型 | 浮动因素 | 浮动比率 |
| 上一年度未发生有责任的道路交通事故 | 下浮 |
| 上两年度未发生有责任的道路交通事故 | 下浮 |
| 上三年度未发生有责任的道路交通事故 | 下浮 |
| 上一年度发生一次有责任不涉及死亡的道路交通事故 |
|
| 上一年度发生两次及以上有责任不涉及死亡的道路交通事故 | 上浮 |
| 上三年度发生有责任涉及死亡的道路交通事故 | 上浮 |
某一机构为了研究某一品牌
座以下投保情况,随机抽取了
辆车龄满三年的该品牌同型号私家车的下一年续保情况,统计得到如下表格:
类型 |
|
|
|
|
|
|
数量 |
|
|
|
|
|
|
以这
辆该品牌汽车的投保类型的频率视为概率.
(I)试估计该地使用该品牌汽车的一续保人本年度的保费不超过
元的概率;
(II)记
为某家庭的一辆该品牌车在第四年续保时的费用,求
的分布列和期望.
【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(
元)试销l天,得到如表单价
(元)与销量
(册)数据:
单价 | 18 | 19 | 20 | 21 | 22 |
销量 | 61 | 56 | 50 | 48 | 45 |
(l)根据表中数据,请建立
关于
的回归直线方程:
(2)预计今后的销售中,销量
(册)与单价
(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?
附:
,
,
,
.