题目内容
【题目】某医院一天派出医生下乡医疗,派出医生人数及其概率如下:
医生人数 | 0 | 1 | 2 | 3 | 4 | 5人及以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.2 | 0.2 | 0.04 |
求:(1)派出医生至多2人的概率;
(2)派出医生至少2人的概率.
【答案】(1)
;(2)
.
【解析】
(1) 派出医生至多2人包含事件派出医生0人、1人、2人,且相互为互斥事件,从而可求;
(2) 派出医生至少2人包含事件派出医生2人、3人、4人、5人及以上,且相互为互斥事件,从而可求;也可以求其对立事件.
记事件A:“不派出医生”,事件B:“派出1名医生”,事件C:“派出2名医生”,事件D:“派出3名医生”,事件E:“派出4名医生”,事件F:“派出不少于5名医生”.
∵事件A,B,C,D,E,F彼此互斥,且
P(A)=0.1,P(B)=0.16,P(C)=0.3,
P(D)=0.2,P(E)=0.2,P(F)=0.04.
(1)“派出医生至多2人”的概率为
P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
(2)“派出医生至少2人”的概率为
P(C+D+E+F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74.
或1-P(A+B)=1-0.1-0.16=0.74.
【题目】将标号为1,2,…,20的20张卡片放入下列表格中,一个格放入一张卡片,选出每列标号最小的卡片,将这些卡片中标号最大的数设为
;选出每行标号最大的卡片,将这些卡片中标号最小的数设为
.
甲同学认为
有可能比
大,乙同学认为
和
有可能相等,那么甲乙两位同学的说法中( )
A. 甲对乙不对 B. 乙对甲不对 C. 甲乙都对 D. 甲乙都不对
【题目】我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的
列联表:
喜欢 | 不喜欢 | 合计 | |
男生 | 18 | ||
女生 | 6 | ||
合计 | 60 |
已知从该班随机抽取1人为喜欢的概率是
.
(Ⅰ)请完成上面的
列联表;
(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.
参考临界值表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
其中![]()