ÌâÄ¿ÄÚÈÝ
ÒÑÖªÅ×ÎïÏß x2=4yµÄ½¹µãÊÇÍÖÔ² C£º
+
=1(a£¾b£¾0)Ò»¸ö¶¥µã£¬ÍÖÔ²CµÄÀëÐÄÂÊΪ
£®ÁíÓÐÒ»Ô²OÔ²ÐÄÔÚ×ø±êԵ㣬°ë¾¶Îª
£¨I£©ÇóÍÖÔ²CºÍÔ²OµÄ·½³Ì£»
£¨¢ò£©ÒÑÖª¹ýµãP£¨0£¬
£©µÄÖ±ÏßlÓëÍÖÔ²CÔÚµÚÒ»ÏóÏÞÄÚÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóÖ±Ïßl±»Ô²O½ØµÃµÄÏÒ³¤£»
£¨¢ó£©ÒÑÖªM£¨x0£¬y0£©ÊÇÔ²OÉÏÈÎÒâÒ»µã£¬¹ýMµã×÷Ö±Ïßl1£¬l2£¬Ê¹µÃl1£¬l2ÓëÍÖÔ²C¶¼Ö»ÓÐÒ»¸ö¹«¹²µã£¬ÇóÖ¤£ºl1¡Íl2£®
| x2 |
| n2 |
| y2 |
| b2 |
| ||
| 2 |
| a2+b2 |
£¨I£©ÇóÍÖÔ²CºÍÔ²OµÄ·½³Ì£»
£¨¢ò£©ÒÑÖª¹ýµãP£¨0£¬
| a2+b2 |
£¨¢ó£©ÒÑÖªM£¨x0£¬y0£©ÊÇÔ²OÉÏÈÎÒâÒ»µã£¬¹ýMµã×÷Ö±Ïßl1£¬l2£¬Ê¹µÃl1£¬l2ÓëÍÖÔ²C¶¼Ö»ÓÐÒ»¸ö¹«¹²µã£¬ÇóÖ¤£ºl1¡Íl2£®
£¨I£©ÓÉx2=4y¿ÉµÃÅ×ÎïÏß½¹µã×ø±êΪ£¨0£¬1£©£¬¡àb=1£¬
ÓÖ¡ße=
£¬¡à
=
£¬¡ßa2=b2+c2£¬¡àa2=4£¬
¡à
=
£¬
¡àÍÖÔ²CµÄ·½³ÌΪ
+y2=1£¬Ô²OµÄ·½³ÌΪx2+y2=5£®
£¨¢ò£©¡ß¹ýµãP£¨0£¬
£©µÄÖ±ÏßlÓëÍÖÔ²CÔÚµÚÒ»ÏóÏÞÄÚÖ»ÓÐÒ»¸ö¹«¹²µã£¬
¡àÖ±ÏßlµÄбÂÊ´æÔÚ£¬ÉèlµÄ·½³ÌΪy=kx+
£¬k£¼0
ÓÉ
£¬µÃx2+4(kx+
)2=4£¬
¼´£¨1+4k2£©x2+8
kx+16=0£¬
Ôò¡÷=(8
k)2-64(1+4k2)=0£¬
¡àk2=1£¬ÓÖk£¼0£¬k=-1£¬
¡àÖ±Ïßl·½³ÌΪy=-x+
£¬
Ô²ÐÄOµ½Ö±Ïßl·½³ÌΪy=-x+
£¬
Ô²ÐÄOµ½Ö±ÏßlµÄ¾àÀëd=
=
£¬
¡àÖ±Ïßl±»Ô²O½ØµÃµÄÏÒ³¤Îª2
=
£®
£¨¢ó£©Ö¤Ã÷£ºÈôµãMµÄ×ø±êΪ£¨2£¬1£©£¬£¨2£¬-1£©£¬£¨-2£¬-1£©£¬£¨-2£¬1£©£¬
Ôò¹ýÕâËĵã·Ö±ð×÷Âú×ãÌõ¼þµÄÖ±Ïßl1£¬l2£¬
ÈôÒ»ÌõÖ±ÏßбÂÊΪ0£¬ÔòÁíÒ»ÌõбÂʲ»´æÔÚ£¬Ôòl1¡Íl2
ÈôÖ±Ïßl1£¬l2бÂʶ¼´æÔÚ£¬ÔòÉè¹ýMÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µãµÄÖ±Ïß·½³ÌΪy-y0=k£¨x-x0£©£¬
ÓÉ
£¬µÃx2+4[kx+£¨y0-kx0£©]2=4£¬
¼´£¨1+4k2£©x2+8k£¨y0-kx0£©•x+4£¨y0-kx0£©2-4=0£¬
Ôò¡÷=[8k£¨y0-kx0£©]2-4£¨1+4k2£©[4£¨y0-kx0£©2-4]=0£¬
»¯¼òµÃ£¨4-x02£©k2+2x0y0k+1-y02=0£¬
¡ßx02+y02=5£¬
¡à£¨4-x02£©k2+2x0yk+x02-4=0£¬
Éèl1£¬l2µÄбÂÊ·Ö±ðΪk1£¬k2£¬ÒòΪl1£¬l2ÓëÍÖÔ²¶¼Ö»ÓÐÒ»¸ö¹«¹²µã£¬
ËùÒÔk1£¬k2Âú×㣨4-x02£©k2+2x0yk+x02-4=0£¬
¡àk1•k2=
=-1£¬
¡àl1¡Íl2£®
ÓÖ¡ße=
| ||
| 2 |
| c2 |
| a2 |
| 3 |
| 4 |
¡à
| a2+b2 |
| 5 |
¡àÍÖÔ²CµÄ·½³ÌΪ
| x2 |
| 4 |
£¨¢ò£©¡ß¹ýµãP£¨0£¬
| 5 |
¡àÖ±ÏßlµÄбÂÊ´æÔÚ£¬ÉèlµÄ·½³ÌΪy=kx+
| 5 |
ÓÉ
|
| 5 |
¼´£¨1+4k2£©x2+8
| 5 |
Ôò¡÷=(8
| 5 |
¡àk2=1£¬ÓÖk£¼0£¬k=-1£¬
¡àÖ±Ïßl·½³ÌΪy=-x+
| 5 |
Ô²ÐÄOµ½Ö±Ïßl·½³ÌΪy=-x+
| 5 |
Ô²ÐÄOµ½Ö±ÏßlµÄ¾àÀëd=
| ||
|
| ||
| 2 |
¡àÖ±Ïßl±»Ô²O½ØµÃµÄÏÒ³¤Îª2
5-(
|
| 10 |
£¨¢ó£©Ö¤Ã÷£ºÈôµãMµÄ×ø±êΪ£¨2£¬1£©£¬£¨2£¬-1£©£¬£¨-2£¬-1£©£¬£¨-2£¬1£©£¬
Ôò¹ýÕâËĵã·Ö±ð×÷Âú×ãÌõ¼þµÄÖ±Ïßl1£¬l2£¬
ÈôÒ»ÌõÖ±ÏßбÂÊΪ0£¬ÔòÁíÒ»ÌõбÂʲ»´æÔÚ£¬Ôòl1¡Íl2
ÈôÖ±Ïßl1£¬l2бÂʶ¼´æÔÚ£¬ÔòÉè¹ýMÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µãµÄÖ±Ïß·½³ÌΪy-y0=k£¨x-x0£©£¬
ÓÉ
|
¼´£¨1+4k2£©x2+8k£¨y0-kx0£©•x+4£¨y0-kx0£©2-4=0£¬
Ôò¡÷=[8k£¨y0-kx0£©]2-4£¨1+4k2£©[4£¨y0-kx0£©2-4]=0£¬
»¯¼òµÃ£¨4-x02£©k2+2x0y0k+1-y02=0£¬
¡ßx02+y02=5£¬
¡à£¨4-x02£©k2+2x0yk+x02-4=0£¬
Éèl1£¬l2µÄбÂÊ·Ö±ðΪk1£¬k2£¬ÒòΪl1£¬l2ÓëÍÖÔ²¶¼Ö»ÓÐÒ»¸ö¹«¹²µã£¬
ËùÒÔk1£¬k2Âú×㣨4-x02£©k2+2x0yk+x02-4=0£¬
¡àk1•k2=
| x02-4 |
| 4-x02 |
¡àl1¡Íl2£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªÅ×ÎïÏßx2+my=0Éϵĵ㵽¶¨µã£¨0£¬4£©ºÍµ½¶¨Ö±Ïßy=-4µÄ¾àÀëÏàµÈ£¬Ôòm=£¨¡¡¡¡£©
A¡¢
| ||
B¡¢-
| ||
| C¡¢16 | ||
| D¡¢-16 |