题目内容
如图,已知PA⊥正方形ABCD所在平面,E、F分别是AB,PC的中点,∠PDA=45°.(1)求证:EF∥面PAD.
(2)求证:面PCE⊥面PCD.
(2)求证:面PCE⊥面PCD.
(1)取PD中点为G,连FG、AG,∵F,G分别为中点,∴FG∥CD,且 FG=
CD.AE∥CD,且 AE=
CD,
即四边形EFGA为平行四边形,∴EF∥AG,又EF?面PAD,AG?面PAD,∴EF∥面PAD.
(2)PA⊥面ABCD∴PA⊥AD,PA⊥CD∴Rt△PAD中,∠PDA=45°∴PA=AD,AG⊥PD,又CD⊥AD,CD⊥PA,
且PA∩AD=A,∴CD⊥面PAD,∴CD⊥AG,又PD∩CD=D,∴AG⊥面PCD,
由(1)知EF∥AG∴EF⊥面PCD,又EF?面PCE,∴面PCE⊥面PCD.
| 1 |
| 2 |
| 1 |
| 2 |
即四边形EFGA为平行四边形,∴EF∥AG,又EF?面PAD,AG?面PAD,∴EF∥面PAD.
(2)PA⊥面ABCD∴PA⊥AD,PA⊥CD∴Rt△PAD中,∠PDA=45°∴PA=AD,AG⊥PD,又CD⊥AD,CD⊥PA,
且PA∩AD=A,∴CD⊥面PAD,∴CD⊥AG,又PD∩CD=D,∴AG⊥面PCD,
由(1)知EF∥AG∴EF⊥面PCD,又EF?面PCE,∴面PCE⊥面PCD.
练习册系列答案
相关题目