题目内容
5.已知m,n∈N*,定义fn(m)=$\frac{n(n-1)(n-2)…(n-m+1)}{m!}$(1)记 am=f6(m),求a1+a2+…+a12的值;
(2)记 bm=(-1)mmfn(m),求b1+b2+…+b2n所有可能值的集合.
分析 (1)根据已知条件得到fn(m)的通式,则由am=f6(m)易求am的通式,所以将其代入所求的代数式进行求值即可;
(2)分类讨论:当n=1和n≥2两种情况下的b2n的通式.
解答 解:(1)由题意知,fn(m)=$\left\{\begin{array}{l}{0,m≥n+1}\\{{C}_{n}^{m},1≤m≤n}\end{array}\right.$,
因为 am=f6(m),
所以 am=$\left\{\begin{array}{l}{0.m≥n+1}\\{{C}_{6}^{m},1≤m≤6}\end{array}\right.$,
所以 a1+a2+…+a12=${C}_{6}^{1}$+${C}_{6}^{2}$+…+${C}_{6}^{6}$=63;
(2)当n=1时,bm=(-1)mmf1(m),
当n≥2时,$\left\{\begin{array}{l}{0,m≥2}\\{-1,m=1}\end{array}\right.$,
则b1+b2=-1.
当n≥2时,bm=$\left\{\begin{array}{l}{0,m≥n+1}\\{(-1)^{m}m{•C}_{n}^{m},1≤m≤n}\end{array}\right.$,
又m${C}_{n}^{m}$=m•$\frac{n!}{m!(n-m)!}$=n•$\frac{(n-1)!}{(m-1)!(n-m)!}$=n${C}_{n-1}^{m-1}$,
所以b1+b2+…+b2n=n[-${C}_{N-1}^{0}$+${C}_{N-1}^{1}$-${C}_{n-1}^{2}$+${C}_{n-1}^{3}$+…+(-1)n${C}_{n-1}^{n-1}$]=0,
所以b1+b2+…+b2n的取值构成的集合为{-1,0}.
点评 本题主要考查了数列的通项及数列的求和,解题的关键是善于利用已知条件中的关系.
| A. | |$\overrightarrow{AB}$|-|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$| | B. | |$\overrightarrow{AB}$|-|$\overrightarrow{CA}$|=|$\overrightarrow{BC}$-$\overrightarrow{AB}$| | C. | |$\overrightarrow{CA}$-$\overrightarrow{BC}$|=|$\overrightarrow{AC}$-$\overrightarrow{BA}$| | D. | |$\overrightarrow{CA}$-$\overrightarrow{BC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$| |