题目内容
定义数列{xn}:x1=1,xn+1=3
+2
+xn;数列{yn}:yn=
;数列{zn}:zn=
;若{yn}的前n项的积为P,{zn}的前n项的和为Q,那么P+Q=( )
| x | 3 n |
| x | 2 n |
| 1 |
| 1+2xn+3xn2 |
| 2+3xn |
| 1+2xn+3xn2 |
分析:由xn+1=3
+2
+xn,变形为
=
,利用“累乘求积”可得P=
.由zn=
=
=
-
,利用“累加求和”可得Q,进而得到P+Q.
| x | 3 n |
| x | 2 n |
| xn |
| xn+1 |
| 1 | ||
1+2xn+3
|
| x1 |
| xn+1 |
| 2+3xn | ||
1+2xn+3
|
1+2xn+3
| ||||
xn+2
|
| 1 |
| xn |
| 1 |
| xn+1 |
解答:解:∵xn+1=3
+2
+xn,∴
=
,∴P=y1y2•…•yn=
•
•…•
=
.
∵zn=
=
=
-
,∴Q=(
-
)+(
-
)+…+(
-
)=
-
.
∵x1=1,
∴P+Q=
+1-
=1.
故选A.
| x | 3 n |
| x | 2 n |
| xn |
| xn+1 |
| 1 | ||
1+2xn+3
|
| x1 |
| x2 |
| x2 |
| x3 |
| xn |
| xn+1 |
| x1 |
| xn+1 |
∵zn=
| 2+3xn | ||
1+2xn+3
|
1+2xn+3
| ||||
xn+2
|
| 1 |
| xn |
| 1 |
| xn+1 |
| 1 |
| x1 |
| 1 |
| x2 |
| 1 |
| x2 |
| 1 |
| x3 |
| 1 |
| xn |
| 1 |
| xn+1 |
| 1 |
| x1 |
| 1 |
| xn+1 |
∵x1=1,
∴P+Q=
| 1 |
| xn+1 |
| 1 |
| xn+1 |
故选A.
点评:本题考查了经过变形利用“累乘求积”求数列的乘积、利用“累加求和”求数列的和的基本技能方法,属于难题.
练习册系列答案
相关题目