题目内容
函数f(x)=x2-2x-3,定义数列{ xn}如下:x1=2,xn+1是过两点P(4,5),Qn( xn,f( xn))的直线PQn与x轴交点的横坐标.
(Ⅰ)证明:2≤xn<xn+1<3;
(Ⅱ)求数列{ xn}的通项公式.
(Ⅰ)证明:2≤xn<xn+1<3;
(Ⅱ)求数列{ xn}的通项公式.
分析:(Ⅰ)用数学归纳法证明:①n=1时,x1=2,直线PQ1的方程为y-5=
(x-4),当y=0时,可得x2=
;②假设n=k时,结论成立,即2≤xk<xk+1<3,直线PQk+1的方程为y-5=
(x-4),当y=0时,可得xk+2=
,根据归纳假设2≤xk<xk+1<3,可以证明2≤xk+1<xk+2<3,从而结论成立.
(Ⅱ)由(Ⅰ),可得xn+1=
,构造bn=xn-3,可得{
+
}是以-
为首项,5为公比的等比数列,由此可求数列{ xn}的通项公式.
| f(2)-5 |
| 2-4 |
| 11 |
| 4 |
| f(xk+1)-5 |
| xk+1-4 |
| 3+4xk+1 |
| 2+xk+1 |
(Ⅱ)由(Ⅰ),可得xn+1=
| 3+4xn |
| 2+xn |
| 1 |
| bn |
| 1 |
| 4 |
| 3 |
| 4 |
解答:(Ⅰ)证明:①n=1时,x1=2,直线PQ1的方程为y-5=
(x-4)
当y=0时,∴x2=
,∴2≤x1<x2<3;
②假设n=k时,结论成立,即2≤xk<xk+1<3,直线PQk+1的方程为y-5=
(x-4)
当y=0时,∴xk+2=
∵2≤xk<xk+1<3,∴xk+2=4-
<4-
=3
xk+2-xk+1=
>0
∴xk+1<xk+2
∴2≤xk+1<xk+2<3
即n=k+1时,结论成立
由①②可知:2≤xn<xn+1<3;
(Ⅱ)由(Ⅰ),可得xn+1=
设bn=xn-3,∴
=
+1
∴
+
= 5(
+
)
∴{
+
}是以-
为首项,5为公比的等比数列
∴
+
=(-
)×5n-1
∴bn=-
∴xn=bn+3=3-
.
| f(2)-5 |
| 2-4 |
当y=0时,∴x2=
| 11 |
| 4 |
②假设n=k时,结论成立,即2≤xk<xk+1<3,直线PQk+1的方程为y-5=
| f(xk+1)-5 |
| xk+1-4 |
当y=0时,∴xk+2=
| 3+4xk+1 |
| 2+xk+1 |
∵2≤xk<xk+1<3,∴xk+2=4-
| 5 |
| 2+xk+1 |
| 5 |
| 2+3 |
xk+2-xk+1=
| (3-xk+1)(1+xk+1) |
| 2+xk+1 |
∴xk+1<xk+2
∴2≤xk+1<xk+2<3
即n=k+1时,结论成立
由①②可知:2≤xn<xn+1<3;
(Ⅱ)由(Ⅰ),可得xn+1=
| 3+4xn |
| 2+xn |
设bn=xn-3,∴
| 1 |
| bn+1 |
| 5 |
| bn |
∴
| 1 |
| bn+1 |
| 1 |
| 4 |
| 1 |
| bn |
| 1 |
| 4 |
∴{
| 1 |
| bn |
| 1 |
| 4 |
| 3 |
| 4 |
∴
| 1 |
| bn |
| 1 |
| 4 |
| 3 |
| 4 |
∴bn=-
| 4 |
| 3×5n-1+1 |
∴xn=bn+3=3-
| 4 |
| 3×5n-1+1 |
点评:本题考查数列的通项公式,考查数列与函数的综合,解题的关键是从函数入手,确定直线方程,求得交点坐标,再利用数列知识解决.
练习册系列答案
相关题目