搜索
题目内容
设函数
f
(
x
)=
ax
+4,若
f
′(1)=2,则
a
等于
A.2 B.-2 C.3 D.不确定
试题答案
相关练习册答案
A
解析:
本题考查多项式函数的导数.
∵
f
′(
x
)=
a
为常数,∴
f
′(1)=
a
=2,即
a
=2.
练习册系列答案
学考单元练测卷系列答案
小学期末总冲刺系列答案
步步高系列衔接教材精华课堂暑假天天乐西安出版社系列答案
中考必考名著精讲细练系列答案
特训30天衔接教材武汉出版社系列答案
好学生口算心算速算系列答案
书立方地方专版系列答案
经纶学典小升初衔接教材系列答案
金钥匙冲刺卷系列答案
全能金卷小学毕业升学全程模拟试卷系列答案
相关题目
设函数
f(x)=ax+
a+1
x
(a>0)
,g(x)=4-x,已知满足f(x)=g(x)的x有且只有一个.
(Ⅰ)求a的值;
(Ⅱ)若
f(x)+
m
x
>1
对一切x>0恒成立,求m的取值范围;
(Ⅲ)若函数h(x)=k-f(x)-g(x)(k∈R)在[m,n]上的值域为[m,n](其中n>m>0),求k的取值范围.
设函数
f(x)=ax-
b
x
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,
(1)求y=f(x)的解析式,并求其单调区间;
(2)用阴影标出曲线y=f(x)与此切线以及x轴所围成的图形,并求此图形的面积.
设函数
f(x)=
ax-1
x+1
;其中a∈R
.
(Ⅰ)解不等式f(x)≤1;
(Ⅱ)求a的取值范围,使f(x)在区间(0,+∞)上是单调减函数.
设函数
f(x)=ax-
b
x
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)讨论函数f(x)的单调性.
设函数
f(x)=ax-
b
x
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)求函数f(x)的单调区间.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案