题目内容
已知{an}是等比数列,公比q>1,前n项和为Sn,且
=
,a4=4,数列{bn}满足:bn=
.
(1)求数列{an},{bn}的通项公式;
(2)设数列{bnbn+1}的前n项和为Tn,求证
≤Tn<
(n∈N*).
| S3 |
| a2 |
| 7 |
| 2 |
| 1 |
| n+log2an+1 |
(1)求数列{an},{bn}的通项公式;
(2)设数列{bnbn+1}的前n项和为Tn,求证
| 1 |
| 3 |
| 1 |
| 2 |
分析:(1)由{an}是等比数列,公比q>1,且
=
,a4=4,利用等比数列的通项公式和前n项和公式列出方程组,求出a1=
,q=2,由此能求出an,再由an能求出bn.
(2)由bn=
,设cn=bnbn+1=
=
(
-
),由此利用裂项求和法求出数列{bnbn+1}的前n项和为Tn,由此能够证明
≤Tn<
(n∈N*).
| S3 |
| a2 |
| 7 |
| 2 |
| 1 |
| 2 |
(2)由bn=
| 1 |
| 2n-1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 3 |
| 1 |
| 2 |
解答:解:(1)∵{an}是等比数列,公比q>1,且
=
,a4=4,
∴
,解得a1=
,q=2,
∴an=
×2n-1=2n-2.
∴bn=
=
=
,
(2)设cn=bnbn+1=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)
=
(1-
)
=
-
<
,
因为Tn<Tn+1,所以
=T1≤Tn<
,n∈N*.
故
≤Tn<
(n∈N*).
| S3 |
| a2 |
| 7 |
| 2 |
∴
|
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
∴bn=
| 1 |
| n+log2an+1 |
| 1 |
| n+log22n-1 |
| 1 |
| 2n-1 |
(2)设cn=bnbn+1=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 4n+2 |
| 1 |
| 2 |
因为Tn<Tn+1,所以
| 1 |
| 3 |
| 1 |
| 2 |
故
| 1 |
| 3 |
| 1 |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明.解题时要认真审题,注意等比数列的性质和裂项求和法的合理运用.
练习册系列答案
相关题目