题目内容

已知{an}是等比数列,公比q>1,前n项和为Sn,且
S3
a2
=
7
2
a4=4
数列{bn}满足:bn=
1
n+log2an+1

(1)求数列{an},{bn}的通项公式;
(2)设数列{bnbn+1}的前n项和为Tn,求证
1
3
Tn
1
2
(n∈N*)
分析:(1)由{an}是等比数列,公比q>1,且
S3
a2
=
7
2
,a4=4,利用等比数列的通项公式和前n项和公式列出方程组,求出a1=
1
2
,q=2,由此能求出an,再由an能求出bn
(2)由bn=
1
2n-1
,设cn=bnbn+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,由此利用裂项求和法求出数列{bnbn+1}的前n项和为Tn,由此能够证明
1
3
Tn
1
2
(n∈N*)
解答:解:(1)∵{an}是等比数列,公比q>1,且
S3
a2
=
7
2
,a4=4,
a1(1-q3)
a1q(1-q)
=
7
2
a1q3=4
,解得a1=
1
2
,q=2,
an=
1
2
×2n-1
=2n-2
∴bn=
1
n+log2an+1
=
1
n+log22n-1
=
1
2n-1

(2)设cn=bnbn+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1

=
1
2
-
1
4n+2
1
2

因为Tn<Tn+1,所以
1
3
=T1Tn
1
2
,n∈N*
1
3
Tn
1
2
(n∈N*)
点评:本题考查数列的通项公式的求法,考查不等式的证明.解题时要认真审题,注意等比数列的性质和裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网