题目内容
给出下列正方体的侧面展开图,其中
分别是正方体的棱的中点,那么,在原正方体中,
与
所在直线为异面直线的是
![]()
A B C D
【答案】
C
【解析】
试题分析:A:把正方体的侧面展开图还原为正方体为:
![]()
因为A、B、C、D分别是正方体的棱的中点,
所以AB∥CD.
所以A错误.
B:把正方体的侧面展开图还原为正方体为:
![]()
因为A、B、C、D分别是正方体的棱的中点,并且结合正方体的结构特征,
所以可得AB∥CD.
所以B错误.
C:把正方体的侧面展开图还原为正方体为:
![]()
因为A、B、C、D分别是正方体的棱的中点,
所以分别延长线段AB、线段DC交于点F,
所以AB与CD不是异面直线,
所以C正确.
故选C.
考点:本题主要考查了空间中的直线与直线的位置关系,即平行、相交、异面的判定.
点评:解决该试题的关键对于侧面展开图的还原,确定出正方体中AB与CD是否为异面直线的位置问题的运用。
练习册系列答案
相关题目