题目内容

定义域为R的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(
3
2
),c=f(2),则a,b,c的大小关系为(  )
A.c>a>bB.a>b>cC.a>c>bD.b>a>c
∵偶函数在[-1,0]上单调递增,
∴函数在[0,1]上单调递减
∵函数f(x)满足f(x+1)=-f(x),
∴f(x+2)=-f(x+1)=f(x)
∵a=f(3),b=f(
3
2
),c=f(2),
∴a=f(1),b=f(
1
2
),c=f(0),
∴c>a>b
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网