题目内容

7.已知△ABC是正三角形,若$\overrightarrow{a}$=$\overrightarrow{AC}$-$λ\overrightarrow{AB}$与向量$\overrightarrow{AC}$的夹角大于90°,则实数λ的取值范围是(  )
A.(2,+∞)B.(-∞,-2)C.(-∞,-1)D.(1,+∞)

分析 首先将三角形的顶点坐标化,根据向量的夹角为钝角,得到数量积公式小于0,求出λ范围.

解答 解:以A为原点,AB所在直线为x轴建立坐标系,则A(0,0),B(1,0),C($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则$\overrightarrow{AC}$=($\frac{1}{2},\frac{\sqrt{3}}{2}$),$\overrightarrow{AB}$=(1,0),
$\overrightarrow{a}$=$\overrightarrow{AC}$-$λ\overrightarrow{AB}$=($\frac{1}{2}-λ$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{a}$与向量$\overrightarrow{AC}$的夹角θ大于90°,
所以cosθ<0,即$\overrightarrow{a}•\overrightarrow{AC}$<0,
所以$\frac{1}{2}(\frac{1}{2}-λ)+\frac{3}{4}<0$,解得λ>2;
故选A.

点评 本题考查了平面向量的数量积公式的运用;向量夹角为钝角,则它们的数量积小于0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网