题目内容

8.在△ABC中,已知atanA+btanB=(a+b)tan$\frac{A+B}{2}$,试判断此三角形的形状.

分析 根据正弦定理以及两角和与差的正弦公式,同角的三角函数的关系,化简即可.

解答 解:∵atanA+btanB=(a+b)tan$\frac{A+B}{2}$,
∴a(tanA-tan$\frac{A+B}{2}$)=b(tan$\frac{A+B}{2}$-tanB)
∴a($\frac{sinA}{cosA}$-$\frac{sin\frac{A+B}{2}}{cos\frac{A+B}{2}}$)=b($\frac{sin\frac{A+B}{2}}{cos\frac{A+B}{2}}$-$\frac{sinB}{cosB}$),
∴a•$\frac{sin(A-\frac{A+B}{2})}{cos\frac{A+B}{2}cosA}$=b•$\frac{sin(\frac{A+B}{2}-B)}{cos\frac{A+B}{2}cosB}$,
∴a•$\frac{sin\frac{A-B}{2}}{cosA}$=b•$\frac{sin\frac{A-B}{2}}{cosB}$,
∴tanA=tanB,
∴A=B
故三角形为等腰三角形.

点评 本题考查了正弦定理以及两角和与差的正弦公式,同角的三角函数的关系,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网