题目内容
已知数列
,
, …,
, ….Sn为其前n项和.计算得S1=
, S2=
, S3=
, S4=
.观察上述结果,推测出计算Sn的公式,并用数学归纳法加以证明.
| 8•1 |
| 12•32 |
| 8•2 |
| 32•52 |
| 8n |
| (2n-1)2(2n+1)2 |
| 8 |
| 9 |
| 24 |
| 25 |
| 48 |
| 49 |
| 80 |
| 81 |
观察分析题设条件可知Sn=
(n∈N)
证明如下:(1)当n=1时,S1=
=
,等式成立.
(Ⅱ)设当n=k时等式成立,即Sk=
.则Sk+1=Sk+
=
+
=
=
=
=
=
由此可知,当n=k+1时等式也成立.根据(1)(2)可知,等式对任何n∈N都成立
| (2n+1)2-1 |
| (2n+1)2 |
证明如下:(1)当n=1时,S1=
| 32-1 |
| 32 |
| 8 |
| 9 |
(Ⅱ)设当n=k时等式成立,即Sk=
| (2k+1)2-1 |
| (2k+1)2 |
| 8(k+1) |
| (2k+1)2(2k+3)2 |
| (2k+1)2-1 |
| (2k+1)2 |
| 8(k+1) |
| (2k+1)2(2k+3)2 |
| [(2k+1)2-1](2k+3)2+8(k+1) |
| (2k+1)2(2k+3)2 |
| (2k+1)2(2k+3)2-(2k+3)2+8(k+1) |
| (2k+1)2(2k+3)2 |
| (2k+1)2(2k+3)2-(2k+1)2 |
| (2k+1)2(2k+3)2 |
| (2k+3)2-1 |
| (2k+3)2 |
| [2(k+1)+1]2-1 |
| [2(k+1)+1]2 |
由此可知,当n=k+1时等式也成立.根据(1)(2)可知,等式对任何n∈N都成立
练习册系列答案
相关题目