题目内容
已知数列| 8•1 |
| 12•32 |
| 8•2 |
| 32•52 |
| 8n |
| (2n-1)2(2n+1)2 |
| 8 |
| 9 |
| 24 |
| 25 |
| 48 |
| 49 |
| 80 |
| 81 |
分析:观察分析题设条件可知Sn=
?(n∈N).然后再用数学归纳法进行证明.
| (2n+1)2-1 |
| (2n+1)2 |
解答:解:观察分析题设条件可知Sn=
(n∈N)
证明如下:(1)当n=1时,S1=
=
,等式成立.
(Ⅱ)设当n=k时等式成立,即Sk=
.则Sk+1=Sk+
=
+
=
=
=
=
=
由此可知,当n=k+1时等式也成立.根据(1)(2)可知,等式对任何n∈N都成立
| (2n+1)2-1 |
| (2n+1)2 |
证明如下:(1)当n=1时,S1=
| 32-1 |
| 32 |
| 8 |
| 9 |
(Ⅱ)设当n=k时等式成立,即Sk=
| (2k+1)2-1 |
| (2k+1)2 |
| 8(k+1) |
| (2k+1)2(2k+3)2 |
| (2k+1)2-1 |
| (2k+1)2 |
| 8(k+1) |
| (2k+1)2(2k+3)2 |
| [(2k+1)2-1](2k+3)2+8(k+1) |
| (2k+1)2(2k+3)2 |
| (2k+1)2(2k+3)2-(2k+3)2+8(k+1) |
| (2k+1)2(2k+3)2 |
| (2k+1)2(2k+3)2-(2k+1)2 |
| (2k+1)2(2k+3)2 |
| (2k+3)2-1 |
| (2k+3)2 |
| [2(k+1)+1]2-1 |
| [2(k+1)+1]2 |
由此可知,当n=k+1时等式也成立.根据(1)(2)可知,等式对任何n∈N都成立
点评:本题考查数列性质的综合应用,解题时要注意数学归纳法的证明步骤,注意培养计算能力.
练习册系列答案
相关题目