题目内容

(2012•黑龙江)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为
1830
1830
分析:令bn+1=a4n+1+a4n+2+a4n+3+a4n+4,则bn+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n-3+a4n-2+a4n-2+a4n+16=bn+16可得数列{bn}是以16为公差的等差数列,而{an}的前60项和为即为数列{bn}的前15项和,由等差数列的求和公式可求
解答:解:∵an+1+(-1)nan=2n-1
an+1=2n-1-(-1)nan
令bn+1=a4n+1+a4n+2+a4n+3+a4n+4
则bn+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n-3+a4n-2+a4n-2+a4n+16=bn+16
∴数列{bn}是以16为公差的等差数列,{an}的前60项和为即为数列{bn}的前15项和
∵b1=a1+a2+a3+a4=10
S=10×15+
15×14
2
×16
=1830
点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网