题目内容
对于任意实数,命题①,则;②,则;③若,则;④ 若,则;⑤,则 .其中真命题的个数是( )
A.1 B.2 C.3 D.4
已知函数
(I)求的单调区间;
(II)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;
(III)若方程有两个正实数根且,求证:.
设函数.
(1)当时,记函数在[0,4]上的最大值为,求的最小值;
(2)存在实数,使得当时,恒成立,求的最大值及此时的值.
已知椭圆的左焦点为F,右顶点为A,点B在椭圆上,且轴,直线AB交y轴于点P,若,则椭圆的离心率是( )
A. B. C. D.
在直角坐标系中,△ 的三个顶点坐标分别为,,,动点 是△内的点(包括边界).若目标函数 的最大值为2,且此时的最优解所确定的点 是线段 上的所有点,则目标函数 的最小值为 .
某卖场同时销售变频冷暖空调机和智能洗衣机,这两种产品的市场需求量大,有多少卖多少。今年元旦假期7天该卖场要根据实际情况确定产品的进货数量,以达到总利润最大。已知两种产品直接受资金和劳动力的限制。根据过去销售情况,得到两种产品的有关数据如下表:(表中单位:百元)
试问:怎样确定两种货物的进货量,才能使7天的总利润最大,最大利润是多少?
直线的倾斜角为( )
在数和之间插入个实数,使得这个实数构成递增的等比数列,将这个数的乘积记作,再令
(1)求数列的通项公式;
(2)设,求数列的前项和.