题目内容
已知sin| x |
| 2 |
| x |
| 2 |
(Ⅰ)求tanx的值;
(Ⅱ)求
| cos2x | ||||
|
分析:(1)由sin
-2cos
=0可直接求出tan
,再由二倍角公式可得tanx的值.
(2)先对所求式子进行化简,再同时除以cosx得到关于tanx的关系式得到答案.
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
(2)先对所求式子进行化简,再同时除以cosx得到关于tanx的关系式得到答案.
解答:解:(1)由sin
-2cos
=0,?tan
=2,
∴tanx=
=
=-
.
(2)原式=
=
由(1)知cosx-sinx≠0
所以上式=
=cotx+1=(-
)+1=
.
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
∴tanx=
2tan
| ||
1-tan2
|
| 2×2 |
| 1-22 |
| 4 |
| 3 |
(2)原式=
| cos2x-sin2x | ||||||||||
|
| (cosx-sinx)(cosx+sinx) |
| (cosx-sinx)sinx |
所以上式=
| cosx+sinx |
| sinx |
| 3 |
| 4 |
| 1 |
| 4 |
点评:本题主要考查同角三角函数的基本关系.这里二倍角公式是考查的重要对象.
练习册系列答案
相关题目