题目内容
已知向量
=(cos(x-
),sin(x-
)),
=(cos(x+
),-sin(x+
)),f(x)=
•
-k|
+
|,x∈[0,π].
(1)若x=
,求
•
及|
+
|;
(2)若k=1,当x为何值时,f(x)有最小值,最小值是多少?
(3)若f(x)的最大值为3,求k的值.
| a |
| π |
| 4 |
| π |
| 4 |
| b |
| π |
| 4 |
| π |
| 4 |
| a |
| b |
| a |
| b |
(1)若x=
| 7π |
| 12 |
| a |
| b |
| a |
| b |
(2)若k=1,当x为何值时,f(x)有最小值,最小值是多少?
(3)若f(x)的最大值为3,求k的值.
(1)由题意可知
•
=(cos(x-
),sin(x-
))• (cos(x+
),-sin(x+
))
=cos(x-
)•cos(x+
)- sin(x-
)•sin(x+
)
=cos2x,∵x=
,∴
•
=cos2x=-
.
|
+
|=|(cos(x-
)+cos(x+
),- sin(x-
)+sin(x+
))|
=
=
=
=
.
(2)k=1,f(x)=
•
-k|
+
|=
•
-|
+
|
=2cos2x-2|cosx|-1
当x=
或x=
时,函数f(x)有最小值f(x)min=-
;
(3)由(2)可知f(x)=2cos2x-2k|cosx|-1
设|cosx|=t,由x∈[0,π]
则:f(x)=g(t)=2t2-2kt-1,t∈[0,1]
当:
≤
?k≤1时,f(x)max=g(1)=2-2k-1=3?k=-1
?k=-1,
当:
>
?k>1时,f(x)max=g(0)=-1≠3,
综上之:k=-1.
| a |
| b |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=cos(x-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=cos2x,∵x=
| 7π |
| 12 |
| a |
| b |
| ||
| 2 |
|
| a |
| b |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
(cos(x-
|
=
| 2+2cos2x |
2-
|
| ||||
| 2 |
(2)k=1,f(x)=
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
=2cos2x-2|cosx|-1
当x=
| π |
| 3 |
| 2π |
| 3 |
| 3 |
| 2 |
(3)由(2)可知f(x)=2cos2x-2k|cosx|-1
设|cosx|=t,由x∈[0,π]
则:f(x)=g(t)=2t2-2kt-1,t∈[0,1]
当:
| k |
| 2 |
| 1 |
| 2 |
|
当:
| k |
| 2 |
| 1 |
| 2 |
综上之:k=-1.
练习册系列答案
相关题目