题目内容

设函数f(x)=sin(x+60°)+2sin(x-60°)-
3
cos(120°-x)

(1)求f(30°)、f(60°)的值;
(2)由(1)你能得到什么结论?并给出你的证明.
分析:(1)把x=30°和x=60°分别代入函数解析式,利用特殊角的三角函数值求得答案.
(2)推断出f(x)=0,利用两角和公式把函数解析式展开后化简整理即可.
解答:解:(1)f(30°)=sin90°+2sin(-30°)-
3
cos90°
=1-1+0=0,
f(60°)=sin120°+2sin0°-
3
cos60°=
3
2
+0-
3
×
1
2
=0;
(2)由(1)得f(x)=0,证明如下:f(x)=sin(x+60°)+2sin(x-60°)-
3
cos(120°-x)

=sinxcos60°+cosxsin60°+2(sinxcos60°-cosxsin60°)-
3
(cos120°cosx+sin120°sinx)
=
1
2
sinx+
3
2
cosx+2(
1
2
sinx-
3
2
cosx)-
3
(-
1
2
cosx+
3
2
sinx)

=
1
2
sinx+
3
2
cosx+sinx-
3
cosx+
3
2
cosx-
3
2
sinx)
=0
即f(x)=0.
点评:本题主要考查了三角函数的恒等变换与化简求值.要求考生能熟练记忆三角函数的基本公式,并能灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网